624 research outputs found

    Remarks on the boundary set of spectral equipartitions

    Full text link
    Given a bounded open set Ω\Omega in Rn\mathbb{R}^n (or a compact Riemannian manifold with boundary), and a partition of Ω\Omega by kk open sets ωj\omega_j, we consider the quantity max⁥jλ(ωj)\max_j \lambda(\omega_j), where λ(ωj)\lambda(\omega_j) is the ground state energy of the Dirichlet realization of the Laplacian in ωj\omega_j. We denote by Lk(Ω)\mathfrak{L}_k(\Omega) the infimum of max⁥jλ(ωj)\max_j \lambda(\omega_j) over all kk-partitions. A minimal kk-partition is a partition which realizes the infimum. The purpose of this paper is to revisit properties of nodal sets and to explore if they are also true for minimal partitions, or more generally for spectral equipartitions. We focus on the length of the boundary set of the partition in the 2-dimensional situation.Comment: Final version to appear in the Philosophical Transactions of the Royal Society

    A series solution and a fast algorithm for the inversion of the spherical mean Radon transform

    Full text link
    An explicit series solution is proposed for the inversion of the spherical mean Radon transform. Such an inversion is required in problems of thermo- and photo- acoustic tomography. Closed-form inversion formulae are currently known only for the case when the centers of the integration spheres lie on a sphere surrounding the support of the unknown function, or on certain unbounded surfaces. Our approach results in an explicit series solution for any closed measuring surface surrounding a region for which the eigenfunctions of the Dirichlet Laplacian are explicitly known - such as, for example, cube, finite cylinder, half-sphere etc. In addition, we present a fast reconstruction algorithm applicable in the case when the detectors (the centers of the integration spheres) lie on a surface of a cube. This algorithm reconsrtucts 3-D images thousands times faster than backprojection-type methods

    Local Asymmetry and the Inner Radius of Nodal Domains

    Full text link
    Let M be a closed Riemannian manifold of dimension n. Let f be an eigenfunction of the Laplace-Beltrami operator corresponding to an eigenvalue \lambda. We show that the volume of {f>0} inside any ball B whose center lies on {f=0} is > C|B|/\lambda^n. We apply this result to prove that each nodal domain contains a ball of radius > C/\lambda^n.Comment: 12 pages, 1 figure; minor corrections; to appear in Comm. PDE

    From Feynman Proof of Maxwell Equations to Noncommutative Quantum Mechanics

    Full text link
    In 1990, Dyson published a proof due to Feynman of the Maxwell equations assuming only the commutation relations between position and velocity. With this minimal assumption, Feynman never supposed the existence of Hamiltonian or Lagrangian formalism. In the present communication, we review the study of a relativistic particle using ``Feynman brackets.'' We show that Poincar\'e's magnetic angular momentum and Dirac magnetic monopole are the consequences of the structure of the Lorentz Lie algebra defined by the Feynman's brackets. Then, we extend these ideas to the dual momentum space by considering noncommutative quantum mechanics. In this context, we show that the noncommutativity of the coordinates is responsible for a new effect called the spin Hall effect. We also show its relation with the Berry phase notion. As a practical application, we found an unusual spin-orbit contribution of a nonrelativistic particle that could be experimentally tested. Another practical application is the Berry phase effect on the propagation of light in inhomogeneous media.Comment: Presented at the 3rd Feynman Festival (Collage Park, Maryland, U.S.A., August 2006

    Semiclassical Dynamics of Electrons in Magnetic Bloch Bands: a Hamiltonian Approach

    Full text link
    y formally diagonalizing with accuracy ℏ\hbar the Hamiltonian of electrons in a crystal subject to electromagnetic perturbations, we resolve the debate on the Hamiltonian nature of semiclassical equations of motion with Berry-phase corrections, and therefore confirm the validity of the Liouville theorem. We show that both the position and momentum operators acquire a Berry-phase dependence, leading to a non-canonical Hamiltonian dynamics. The equations of motion turn out to be identical to the ones previously derived in the context of electron wave-packets dynamics.Comment: 4 page

    Interrupt Timed Automata: verification and expressiveness

    Get PDF
    We introduce the class of Interrupt Timed Automata (ITA), a subclass of hybrid automata well suited to the description of timed multi-task systems with interruptions in a single processor environment. While the reachability problem is undecidable for hybrid automata we show that it is decidable for ITA. More precisely we prove that the untimed language of an ITA is regular, by building a finite automaton as a generalized class graph. We then establish that the reachability problem for ITA is in NEXPTIME and in PTIME when the number of clocks is fixed. To prove the first result, we define a subclass ITA- of ITA, and show that (1) any ITA can be reduced to a language-equivalent automaton in ITA- and (2) the reachability problem in this subclass is in NEXPTIME (without any class graph). In the next step, we investigate the verification of real time properties over ITA. We prove that model checking SCL, a fragment of a timed linear time logic, is undecidable. On the other hand, we give model checking procedures for two fragments of timed branching time logic. We also compare the expressive power of classical timed automata and ITA and prove that the corresponding families of accepted languages are incomparable. The result also holds for languages accepted by controlled real-time automata (CRTA), that extend timed automata. We finally combine ITA with CRTA, in a model which encompasses both classes and show that the reachability problem is still decidable. Additionally we show that the languages of ITA are neither closed under complementation nor under intersection

    Monopole and Berry Phase in Momentum Space in Noncommutative Quantum Mechanics

    Full text link
    To build genuine generators of the rotations group in noncommutative quantum mechanics, we show that it is necessary to extend the noncommutative parameter Ξ\theta to a field operator, which one proves to be only momentum dependent. We find consequently that this field must be obligatorily a dual Dirac monopole in momentum space. Recent experiments in the context of the anomalous Hall effect provide for a monopole in the crystal momentum space. We suggest a connection between the noncommutative field and the Berry curvature in momentum space which is at the origine of the anomalous Hall effect.Comment: 4 page

    High Resolution Zero-Shot Domain Adaptation of Synthetically Rendered Face Images

    Full text link
    Generating photorealistic images of human faces at scale remains a prohibitively difficult task using computer graphics approaches. This is because these require the simulation of light to be photorealistic, which in turn requires physically accurate modelling of geometry, materials, and light sources, for both the head and the surrounding scene. Non-photorealistic renders however are increasingly easy to produce. In contrast to computer graphics approaches, generative models learned from more readily available 2D image data have been shown to produce samples of human faces that are hard to distinguish from real data. The process of learning usually corresponds to a loss of control over the shape and appearance of the generated images. For instance, even simple disentangling tasks such as modifying the hair independently of the face, which is trivial to accomplish in a computer graphics approach, remains an open research question. In this work, we propose an algorithm that matches a non-photorealistic, synthetically generated image to a latent vector of a pretrained StyleGAN2 model which, in turn, maps the vector to a photorealistic image of a person of the same pose, expression, hair, and lighting. In contrast to most previous work, we require no synthetic training data. To the best of our knowledge, this is the first algorithm of its kind to work at a resolution of 1K and represents a significant leap forward in visual realism
    • 

    corecore